Understanding: Magnetism: Teacher’s Guide

Grade Level: 6-8
Curriculum Focus: Physical Science
Lesson Duration: Two class periods

Program Description

Without magnetism we would not have music as we know and experience it today; we would not have computers, motor vehicles, compasses, or MRI scans. Magnetism literally shapes our modern-day world. Learn how magnetic forces were first discovered and how magnetism affects both humans and other animals. Explore the role of magnetism in computers, audio recording, medicine, and travel.

Onscreen Questions and Activities

Segment 1, Understanding: Magnetism, Part One

- Pre-viewing questions:

 o What is a magnetic domain? (A magnetic domain is a series of atoms that point their poles in the same direction. A bar magnet is made up of a group of domains.)

 o How is it possible for some animals to navigate using Earth's magnetic lines of force? (Some animals can navigate because small amounts of magnetite found in their brains become aligned to Earth's magnetic lines of force.)

 o Discuss the idea of magnetic reversal. How might our lives change if this happened? What could we do to prepare for such an event?

- Activity: Make a list of items including nails, silver, gold, high-iron cereal, and a crushed multivitamin. Have students predict which are magnetic. Test the items using a strong magnet and discuss the results in class.

Segment 2, Understanding: Magnetism, Part Two

- Pre-viewing questions:

 o How did magnetic resonance imaging revolutionize health care? (Magnetic resonance imaging has revolutionized health care by enabling doctors to detect tumors earlier and more safely than other types of imaging technology like x-rays.)

 o How are magnetic levitation vehicles propelled? (Magnetic levitation vehicles are lifted up and propelled by alternating very strong repulsive and attractive magnetic forces.)
Discuss the possible effects of using nuclear fusion as a source of power. Then debate the positive and negative impacts it might have on global society and the environment.

- Activity: Have students form small groups and research magnetic levitated trains. Determine what materials would be necessary to build a model. Then work together as a class to create a working train.

Lesson Plan

Student Objectives

Students will understand:

- Only certain materials can be attracted by a magnet.
- Those materials contain iron.
- Magnetism is caused by the behavior of atoms in a magnet.

Materials

- *Understanding: Magnetism* video and VCR, or DVD and DVD player
- Research materials on magnetism
- Computer with Internet access

For each group:

- A variety of objects including some that will and some that will not be attracted by a magnet (suggestions: aluminum foil, silver or gold jewelry, high-iron cereal crushed into a powder, crushed multivitamin tablet or emptied multivitamin capsule that contains iron, piece of videotape, piece of audiotape, inside of a computer disk)
- Strong magnet

Procedures

1. Review with your students what they have learned about magnetism. Encourage them to discuss their experience with magnets, including experiments they have performed. Then let them know that they are about to perform a series of simple experiments that will show which of a group of objects will be attracted to a magnet.

2. Divide the class into groups, providing each group with the materials listed above.

3. Before they experiment, have the groups meet to predict which materials will be attracted by the magnet and which will not. They should devise charts on which to record their predictions.
4. Have group members take turns testing each object or substance with the magnet. On their charts, they should record what was attracted by the magnet and what was not. Were their predictions confirmed?

5. Ask students if they can explain the results of their experiments. Then, divide the class into research groups, allowing students to use the materials you have provided, materials in the school library, or sources on the Internet to find out what causes magnetic attraction.

6. Each student should write a brief explanation of magnetism based on his or her research. The explanation should include a description of the behavior of atoms in a magnet, as well as reasons that the specific materials with which students experimented were or were not attracted by a magnet.

7. Have students share their explanations with their groups.

Discussion Questions

1. Discuss the idea of a magnetic reversal. Should we be monitoring the possibility of one more closely, or is it safe to assume that since the Earth has gone through reversals before that we will successfully survive another one?

2. Discuss the idea of integrating different disciplinary areas of science toward a common goal. Does this seem like a reasonable idea? Why might scientists not want to collaborate with colleagues from other disciplines or even with colleagues from their same area of discipline?

3. Discuss why studying bacteria and animals who use magnetic field lines for navigation is useful. Can you point out advantages to being able to navigate using magnetic field lines?

4. Discuss in depth the impact Michael Faraday has had on our society with his inventions of the electric motor and the electric generator. Why don't more people know who he is if his contributions have been so revolutionary?

5. Discuss whether more money should be designated for building a bigger particle accelerator. If you think the money should be spent, what or who should be the source of the money?

6. Discuss the idea of limitless, extremely cheap and clean power. Do you believe a source of power can truly be limitless? Why might some people not want to spend money for research on fusion? Who would not benefit from widespread use of fusion?

Assessment

Use the following three-point rubric to evaluate students' work during this lesson.

- 3 points: Student’s explanation included accurate information; clear wording; logical organization; each material in experiments accounted for.

- 2 points: Student’s explanation included adequate information; wording sometimes unclear; satisfactory organization; not all materials in experiments accounted for

- 1 point: Student’s explanation included some inaccurate information; some unclear wording; organization unsatisfactory; not all materials in experiments accounted for.
Vocabulary

charlatan
Definition: A person who makes elaborate and fraudulent claims to skill or knowledge.
Context: Though declared a charlatan and a quack by a Royal Commission, Mesmer had discovered something, the magnetic link between magic and medicine.

converge
Definition: To approach an intersecting point.
Context: Like all magnets, the Earth's field lines converge at its magnetic poles.

lexicon
Definition: A stock of terms used in a particular profession; a dictionary.
Context: Magnetic Resonance Imaging technology revolutionized health care and the acronym MRI entered the popular lexicon.

ore
Definition: A mineral or aggregate of minerals from which a valuable constituent, such as metal, can be profitably mined.
Context: Lodestone is an iron ore, a natural magnet.

plasma
Definition: An electrically neutral, highly ionized gas composed of ions, electrons, and neutral particles.
Context: When those charged particles hit the atmosphere they ionize it and make a weak plasma.

Academic Standards

National Academy of Sciences
The National Science Education Standards provide guidelines for teaching science as well as a coherent vision of what it means to be scientifically literate for students in grades K-12. To view the standards, visit http://books.nap.edu.

This lesson plan addresses the following science standards:

- Physical Science: Transfer of energy; motions and forces

Mid-continent Research for Education and Learning (McREL)
McREL's Content Knowledge: A Compendium of Standards and Benchmarks for K-12 Education addresses 14 content areas. To view the standards and benchmarks, visit http://www.mcrel.org/.

This lesson plan addresses the following national standards:
• Science—Physical Science: Understands forces and motion.
• Science—Nature of Science: Understands the nature of scientific inquiry.
• Technology: Understands the relationships among science, technology, society, and the individual